Last week, Tanzania planted its first ever genetically modified crop–a drought-resistant white corn hybrid. Government researchers will spend the next two to three years monitoring the plants for safety and effectiveness at growing in perilously dry conditions. It’s a notable milestone, given the nation’s longstanding lack of enthusiasm towards biotechnology. But as much as Tanzania’s turnaround is unique to its particular politics, history and culture, it’s also part of a quiet regulatory reversal in Africa. Other countries facing climate change-fueled food insecurity are beginning to bet on biotech.

Until last year, Tanzania was a very difficult place to even think about owning a genetically modified crop product, let alone growing one. Under a “strict liability” law adopted in 2009, anyone involved with importing, moving, storing or using GM products could be sued if someone else claimed the product caused them harm or loss. And that broad definition went beyond personal, it included environmental damage. Effectively, it was a regulatory blockade.

“Tanzania has been a nightmare, with that strict liability clause,” says microbiologist Jennifer Thompson, who is on the board of the African Agricultural Technology Foundation. “Until last year we had never bothered to apply for field trials there because we knew it was such a lost cause.” AATF manages the Water Efficient Maize for Africa (WEMA) project, which developed the GM maize (another word for corn) hybrid for Tanzania.

The repeal’s timing was no coincidence. In the last 18 months, unusually high temperatures and a brutal El Nino have punished many parts of Africa with drought. Ethiopia, 400 miles to the North of Tanzania is currently experiencing its worst water shortage in 30 years. South Africa just emerged from its worst drought since 1904. According to the World Health Organization, at least 30 million people in Southern and Eastern Africa will be affected by the water shortages this year.

It is in this context that nations like Tanzania are rethinking their GM food crops positions. Maize is the main food source for one out of every four Africans, and droughts hit it hard. While WEMA has also been developing and distributing non-GM drought-resistant hybrids, so far they have proved to be less efficient than the engineered version. At present only South Africa, Egypt, Burkina Faso and Sudan grow GM crops commercially, but that is likely to change in the next few years.

In January and March of this year (respectively), Malawi approved confined field trials for insect-resistant cowpea and a genetically modified banana being evaluated for resistance against the Bunchy Top Virus that decimated banana crops in the region last year. Uganda also approved field trials of a cooking banana variety engineered with Banana Bacterial Wilt resistance in March. Kenya granted a conditional approval for Bt maize performance trials in February.

“It’s really exciting, because until the crop is in the ground this is all just talk,” says Pam Ronald, a plant geneticist at UC Davis whose own work with flood-resistant rice resulted in a variety now being grown by 5 million farmers in India and Bangladesh. “Farming everywhere in the world is empirical. But you can’t see how useful something is until it’s actually in a field somewhere. And that takes leadership that is going to make decisions based on science and the needs of farmers rather than an abstract ideology imported in from developed countries.”